

CHƯƠNG TRÌNH ĐÀO TẠO Y KHOA LIÊN TỤC

THỞ MÁY CHO BỆNH NHÂN NON-ARDS

Trình bày: BSCK1. Nguyễn Lý Minh Duy

TP. HCM, ngày 17 tháng 12 năm 2019

TỔNG QUAN

- 1543 Vesalius, concept of mechanical ventilation
- 1774 Joseph Priestly and Willhelm Scheele independently discovered oxygen
- \rightarrow mouth to mouth resuscitation by Tossach

1900s-1950: Negative ventilation

- 1864: Alfred Jones first body enclosing device
- 1929: Drinker and Shaw The first iron lung

1950 to the present

- Bjorn Ibsen & Lassen : positive airway pressure "hand bagged" → mortality of polio patients 87 % to 40 %
- Revolution of ventilator: flow delivery exhalation valves, microprocessors, triggering, flow delivery, and the development of new modes of ventilation
- Barach & Ashbaugh: positive end-expiratory pressure (PEEP)

TỔNG QUAN

TỔNG QUAN

ARDS, pulmonary

mortality

complications, in hospital

 \approx 20% with tidal volumes \leq 6 mL/kg PBW ARDS recognized in only 34% of patients

- Thông khí cơ học cứu mạng (?) →
 Gây tổn hại
- ARDS

– Thông khí giảm Vt tăng PEEP/ ARDS – High Driving Pressure \rightarrow VILI

- Non ARDS ?
 - Low Vt
 - High PEEP
 - Low Driving Pressure

LOW TIDAL VOLUME

PROS

Tác giả	Thiết kế	So sánh	Kết cục
Lee	RCT	12 vs 6	Vt thấp ít biến chứng hô
1990	103 BN	ml/kg	hấp, thời gian thở máy ngắn
Gajic O	RCT	10 vs 6	Nguy cơ ARDS tăng gấp 5
2005	3261 BN	ml/kg	lần
Determann	RCT	10 vs 6	Vt thấp ít bị ARDS hơn
2010	150 BN	ml/kg	
Serpa Neto 2015	Cohort 2184 BN	>10 vs <7 ml/kg 7 – 10 ml/kg	Nguy cơ biến chứng hô hấp OR 0,72 (0,52 ; 0,98) Không khác biệt
Sjoding MW 2019	Cohort 1905	> 8ml/kg	Tăng tỷ lệ tử vong OR ₁₂ 1,66 (1,15 - 2,38) OR ₂₄ 1,51 (1,08 - 2,11)

Association Between Use of Lung-Protective Ventilation With Lower Tidal Volumes and Clinical Outcomes Among Patients Without Acute Respiratory Distress Syndrome

A Meta-analysis

Ary Serpa Neto, MD, MSc

ĐẶC ĐIỂM DÂN SỐ

Mean (SD)

	Protective Ventilation (n = 1416)	Conventional Ventilation (n = 1406)	<i>P</i> Value
Age, y	59.97 (7.92)	60.22 (7.36)	.93
Weight, kg	72.71 (12.34)	72.13 (12.16)	.93
Tidal volume, mL/kg IBW ^a	6.45 (1.09)	10.60 (1.14)	<.001
PEEP, cm H ₂ O ^a	6.40 (2.39)	3.41 (2.79)	.01
Plateau pressure, cm H_2O^a	16.63 (2.58)	21.35 (3.61)	.006
Respiratory rate, breaths/min ^a	18.02 (4.14)	13.20 (4.43)	.01
Minute-volume, L/min ^{a,b}	8.46 (2.90)	9.13 (2.70)	.72
Pao ₂ /Fio2 ^a	304.41 (65.74)	312.97 (68.13)	.51
Paco ₂ , mm Hg ^a	41.05 (3.79)	37.90 (4.19)	.003
pH ^a	7.37 (0.03)	7.40 (0.03)	.11

Association Between Use of Lung-Protective Ventilation With Lower Tidal Volumes and Clinical Outcomes Among Patients Without Acute Respiratory Distress Syndrome A Meta-analysis

Ary Serpa Neto, MD, MSc

KÉT CỤC

- 47/1113 Low Vt vs 38/1090 High Vt tổn thương phổi. RR = 0,33 (0,23 – 0,41). NNT = 11
- Tỷ lệ tử vong ở nhóm bệnh nhân Low Vt giảm RR = 0,64 (0,46 0,89). NNT = 23
- Tần suất viêm phổi và xẹp phổi ở nhóm Low Vt giảm RR = 0,45 (0,22 – 0,92). NNT = 26

LOW TIDAL VOLUME

CONS

Tác giả	Thiết kế	So sánh	Kết cục
Fernandez 2014	RCT 28 BN	10 vs 6 ml/kg	Không thay đổi biomarker (Neutrophil elastase, Clara cell) tổn thương phổi/60' thông khí
Wrigge 2004	RCT	12 – 15 + PEEP = 0 vs 6 ml/kg+ PEEP = 10	Không khác biệt oxy máu động mạch,TNF alpha, IL1, IL6, IL8a, IL 12 / 3 giờ thông khí

- Kallet 2001,2006: Bất đồng bộ bệnh nhân máy thở, nguy cơ xẹp phổi
- Lipshutz AK and Gropper (2013): Yếu cơ do thuốc dãn cơ

LOW TIDAL VOLUME

Nghiên cứu PreVENT

🕅 **JAMA** Network^{**}

QUESTION For patients in the ICU who are ventilated for reasons other than ARDS, is low tidal volume superior to intermediate tidal volume?

CONCLUSION Among ICU patients receiving invasive ventilation, a strategy with a low tidal volume was not superior to using intermediate tidal volume.

Writing Group for the PReVENT Investigators. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: a randomized clinical trial [published online October 24, 2018]. JAMA. doi:10.1001/jama.2018.14280

the view cho have the second s

Low Tidal Volume

LOW TIDAL VOLUME

Intermediate Tidal Volume

Nghiên cứu PreVENT

Subgroups	Ventilator-Fre Days,ª Mean (SD)	e No.	Ventilator-Free Days,ª Mean (SD)	No.	Mean Difference (95% CI)	Favors Intermediate Tidal Volume	Favors Low Tidal Volume	P Value
Cardiac arrest								
Yes	15.2 (12.4)	110	15.1 (12.4)	120	-0.00 (-3.17 to 3.29)		•	.80
No	15.2 (11.3)	367	15.6 (11.1)	364	-0.38 (-2.02 to 1.25)			
Sepsis								
Yes	12.0 (11.7)	50	14.2 (10.8)	46	-2.20 (-5.46 to 1.06)			.17
No	16.0 (11.4)	427	15.7 (11.6)	438	-0.25 (-1.38 to 1.89)			
Postoperative	ventilation							
Yes	17.7 (11.1)	82	17.8 (10.8)	79	-0.08 (-3.26 to 3.09)	-		.87
No	14.6 (11.6)	395	15.0 (11.5)	405	-0.38 (-2.01 to 1.25)			
Risk of ARDS ^b								
Higher	14.0 (11.4)	292	14.2 (11.4)	290	-0.19 (-2.06 to 1.66)			.96
Lower	17.0 (11.6)	185	17.3 (11.3)	194	-0.27 (-2.61 to 2.07)			
Pneumonia								
Yes	13.3 (11.2)	77	11.7 (10.6)	77	1.56 (-1.94 to 5.08)	-	•	.29
No	15.6 (11.6)	400	16.2 (11.5)	407	-0.58 (-2.18 to 1.01)			
Airway protect	tion							
Yes	17.4 (11.2)	39	16.1 (12.2)	39	1.30 (-4.02 to 6.64)	-		→ .53
No	15.0 (11.6)	438	15.4 (11.4)	445	-0.41 (-1.93 to 1.11)		<u> </u>	
Cardiac failure								
Yes	15.4 (11.2)	28	18.4 (12.3)	17	-2.93 (-10.39 to 4.53)	·		.45
No	15.2 (11.6)	449	15.4 (11.4)	467	-0.18 (-1.68 to 1.31)			
Head trauma o	or brain surgery							
Yes	14.3 (12.0)	25	14.5 (10.5)	31	-0.18 (-6.32 to 5.95)	<		.97
No	15.3 (11.6)	452	15.6 (11.5)	453	-0.29 (-1.80 to 1.21)			
Aspiration								
Yes	14.1 (11.6)	20	14.9 (11.7)	24	-0.80 (-5.41 to 3.79)			.81
No	15.3 (11.6)	457	15.5 (11.4)	460	-0.23 (-1.78 to 1.32)		l <u></u> _	
All patients					-0.27 (-1.74 to 1.19)			
						-6 -5 -4 -3 -2 -1 Mean Differe	0 1 2 3 ence (95% CI)	4 5 6

Nghiên cứu PreVENT

- Phân nhóm trong 3 ngày đầu
 - Ngày 0: 5,9 vs 9,1 ml/Kg
 - Ngày 1: 6,6 vs 9,3 ml/Kg
 - Ngày 2: 7,4 vs 9,1 ml/Kg
- (p <0,001)
- Sau ngày đầu phần lớn chuyển sang PSV, khó kiểm soát Vt
- Miss 26 %, Không đồng ý 11 %
- \rightarrow Thông khí 6 8 ml/kg.

HIGH PEEP

Tác giả	Thiết kế	So sánh	Kết cục
Manzano 2008	RCT 131 BN	5-8 cmH ₂ O vs 0 cmH ₂ O	Tử vong giống nhau VAP thấp hơn ở PEEP cao RR = 0,37 (0,15 – 0,84)
PROVE Ary Serpa Neto 2016	Meta- analysis	0 – 10 lower PEEP vs 5 – 30 higher PEEP	Không thay đổi Tử vong, thời gian thở máy, ARDS hoặc viêm phổi
Futier E 2013	RCT 400 BN	10 – 12ml/kg + No PEEP vs 6 – 8 ml/kg + PEEP 6 - 8	Tổn thương phổi và ngoài phổi RR = 0,4 (0,24 – 0,68)
Servegnini 2013	RCT 58 BN T > 2h	9 ml/kg + PEEP 0 vs 7 PEEP 10	CN hô hấp, oxy hoá máu động mạch, X quang tốt hơn ở bệnh nhân PEEP cao

Intensive Care Med DOI 10.1007/s00134-016-4309-4

WHAT'S NEW IN INTENSIVE CARE

What's new in mechanical ventilation in patients without ARDS: lessons from the ARDS literature

Ary Serpa Neto^{1,2,3} and Samir Jaber^{4*}

Li cs 2015 Gurudant 2012 Bellamy 2006 \rightarrow U Shape

LOW DRIVING PRESSURE

Risk classification using predefined cutoffs for P/F and driving pressure in non–ARDS patients with invasive ventilation

David van Meenen, Coen Merkies, Laura Schouten, Lieuwe Bos, Ary Serpa Neto, Paolo Pelosi, Marcelo Gama De Abreu, Frederique Paulus, Marcus Schultz European Respiratory Journal 2018 52: PA330; DOI: 10.1183/13993003.congress-2018.PA330

LOW DRIVING PRESSURE

Check fo

Association between hospital mortality and inspiratory airway pressures in mechanically ventilated patients without acute respiratory distress syndrome: a prospective cohort study

Sarina K. Sahetya¹, Christopher: Mallow¹, Jonathan E. Sevransky², Greg S. Martin^{2,3}, Timothy D. Girard⁴, Roy G. Brower¹, William Checkley ¹ and Society of Critical Care Medicine Discovery Network Critical Illness Outcomes Study Investigators

THIẾT KẾ NGHIÊN CỨU

- Pplateau và Driving Pressure → kết cục bệnh nhân ARDS và non – ARDS?
- Quan sát tiến cứu
- 59 ICU Mỹ, 1132 bệnh nhân
- 822 Non ARDS

Association between hospital mortality and inspiratory airway pressures in mechanically ventilated patients without acute respiratory distress syndrome: a prospective cohort study

ĐẶC ĐIỂM DÂN SỐ

APACHE II	20.2 (7.4)
SOFA	6 (4–9)
PaO ₂ /FiO ₂	255.6 (150.7)
Compliance respiratory system	39.6 (28.2)
Plateau pressure	20.6 (6.5)
Driving pressure	14.3 (6.0)
PEEP	5 (5–8)
Tidal volume (mL/kg PBW)	7.2 (1.21)
Hospital LOS	18 (10–30)
ICU LOS	10 (5–17)
Ventilator days	7 (3–14)
Mortality	224 (27.3)

Association between hospital mortality and inspiratory airway pressures in mechanically ventilated patients without acute respiratory distress syndrome: a prospective cohort study

KÊT QUẢ (tử vong)

	Non-ARDS)	
	OR ^a	95% CI	p value
Driving pressure (per 7 cm H ₂ O) ^b	1.36	1.14–1.62	< 0.001
Plateau pressure (per 8 cm H ₂ O) ^b	1.42	1.17–1.73	< 0.001
Age (per 5 years)	1.05	0.98–1.11	0.125
PEEP (per 1 cm H ₂ O)	1.05	0.98–1.11	0.16
APACHE II (per 1 point)	1.08	1.04-1.11	< 0.001
Vasopressor use	1.52	1.06–2.16	0.02
Sepsis	1.12	0.77-1.62	0.56

PHÒNG MÔ

Tác giả	Thiết kế	Dân số	So sánh	Kết cục
IMPROVE	RCT 400 BN	Phẫu thuật	10 - 12 ml/kg + PEEP =0 vs 6 - 8 ml/kg + PEEP =6 - 8 Mean T = 200 mins	Low Vt ít biến chứng hô hấp, nhiễm trùng, shock, tử vong hơn.
Sutherasan 2014	Review Metanalysis	Phẫu thuật	9ml/kg	tăng biến chứng hô hấp, yếu tố độc lập trong suy đa cơ quan Hypoxemia, BC phổi, T thở máy, Tử vong
PROVHIO trial 2014	RCT 900 BN Châu Âu+ Mỹ	Phẫu thuật	PEEP 12(12 ; 12) vs 2 (0 ; 2) Mean T = 200 mins	Không khác biệt biến chứng ở High vs Low PEEP

Huyền thoại "500ml" → CDC: 10 % nam , 85 % nữ có Vt > 8 ml/kg

- Nguồn nhập khoa HSCC 42,5 %
- Đặt nội khí quản tại cấp cứu 6,8 8 % → ARDS 14 27,5 %.
- Huyền thoại "500ml"
- 10% bệnh nhân thở máy non-ARDS được điều chỉnh máy thở.
- 42 % bệnh nhân nhận cùng thông số khi chuyển ICU.
- 28 % không đổi trong 24 giờ.
- Stolze và cs: sử dụng Vt ở trước viện → ảnh hưởng Vt nhập viện 7,06 lần

Lung-protective ventilation initiated in the emergency department (LOV-ED): a quasi-experimental, before-after trial

Brian M. Fuller, MD, MSCI,

Departments of Emergency Medicine and Anesthesiology, Division of Critical Care, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA

- 1192 BN trước can thiệp
- 513 BN sau can thiệp
 - Vt thấp → bảo vệ phổi
 - PEEP tránh xẹp phổi
 - Tránh tăng oxy quá mức
 - Đầu cao

Lung-protective ventilation initiated in the emergency department (LOV-ED): a quasi-experimental, before-after trial

	Pre-intervention Group (n= 1,192)	Intervention Group (n= 513)	* Odds Ratio or Between-Group Difference (95% CI)
Tidal volume, mL			
Median (IQR)	500 (500-550)	420 (370–470)	
Mean (SD)	515.7 (71.6)	422.0 (71.5)	-93.7 (-99.5 to -87.8)
Tidal volume, mL/kg PBW			
Median (IQR)	8.1 (7.3–9.1)	6.3 (6.0–6.7)	
Mean (SD)	8.3 (1.5)	6.4 (0.8)	-1.8 (-1.9 to -1.7)
PEEP			
Median (IQR)	5 (5–5)	5 (5-8)	
Mean (SD)	5.4 (1.5)	6.5 (2.5)	1.1 (0.9 to 1.3)
Respiratory rate			
Median (IQR)	14 (12–16)	20 (20–24)	
Mean (SD)	15.3 (3.5)	20.9 (3.8)	5.6 (5.3 to 5.9)
F _i O ₂			
Median (IQR)	80 (50-100)	40 (40-60)	
Mean (SD)	75.0 (25.9)	53.4 (21.7)	-21.6 (-23.5 to -19.8)
Head-of-bed elevation, n (%)	989 (39.4)	704 (92.6)	19.4 (14.6–25.7)
Lung protective ventilation, n (%)	1202 (47.8)	731 (96.2)	37.6 (21.8–64.7)

	After Matching				
	Pre-intervention Group (n= 490)	Intervention Group (n= 490)	* aOR or Between-Group Difference (95% CI)		
Primary composite outcome, n (%) •ARDS •VACs	71 (14.5) 53 (10.8) 37 (7.6)	36 (7.4) 20 (4.1) 23 (4.7)	0.47 (0.31–0.71) 0.35 (0.21–0.60) 0.60 (0.35–1.03)		
Ventilator-free days	14.7 (11.7)	18.4 (10.4)	3.69 (2.30 to 5.07)		
Hospital-free days	9.4 (9.5)	11.7 (9.2)	2.38 (1.21 to 3.55)		
ICU-free days	13.6 (11.1)	16.0 (9.9)	2.36 (1.04 to 3.68)		
Mortality, n (%)	167 (34.1)	96 (19.6)	0.47 (0.35–0.63)		

SAU NGƯNG TIM

- Ân tim hiệu quả → chấn thương phổi ? → thời gian thở máy, nằm viện, tỷ lệ tử vong.
- Hội chứng sau ngưng tim
 - Tổn thương não
 - RL CN cơ tim
 - Thiếu máu, tổn thương do tái tưới máu
 - Stress oxy hoá, RL đông máu, phản ứng viêm
 → Suy đa cơ quan
- Nguy cơ cao ARDS
- → Thông khí ?

2900

Ventilator Management and Respiratory Care After Cardiac Arrest

Oxygenation, Ventilation, Infection, and Injury

Nicholas J. Johnson, MD; David J. Carlbom, MD; and David F. Gaieski, MD

MỤC TIÊU PaO₂

Tác giả	Thiết kế	Primary Outcome	Secondary Outcome
Kilgannon 2010	Cohort 6326 BN	PaO ₂ ≥ 300 mmHg, ≤ 60 mmHg tăng tử vong	
Kilgannon 2011	Cohort 4459	PaO ₂ tương quan thuận tử vong, nghịch kết cục thần kinh	PaO ₂ tăng 100mmHg tăng 24 % nguy cơ tử vong
Bellomo 2011	Cohort 12108	PaO₂ ≥ 300 mmHg tăng tử vong	
Johnson 2016	Cohort 544	Tăng oxy không ảnh hưởng kết cục thần kinh	PaO₂ ≥ 300 mmHg thời điểm 12 giờ tăng tỷ lệ tử vong

Tác giả	Thiết kế	Primary Outcome	Secondary Outcome
Robert 2013	Cohort 193 BN	PaCO₂ ≥ 50 mmHg, ≤ 30 mmHg kết cục xấu về thần kinh	
Schneider 2013	Cohort 16452	PaCO₂ ≤ 30 mmHg tăng tử vong	PaCO₂ ≥ 45 mmHg tỷ lệ xuất viện cao hơn
Bennett 2013	Cohort 195	PaCO ₂ không liên quan kết cục thần kinh	PaO ₂ không liên quan kết cục thần kinh
Vaahersalo 2014	Cohort 409	PaCO₂ ≥ 45 mmHg đi kèm với kết cục thần kinh tốt 12 tháng	PaO ₂ không liên quan kết cục thần kinh
Helmershorst 2015	Cohort 5258	PaCO₂ ≤ 35 mmHg tăng tử vong	
Tolins 2017	Cohort	PaCO ₂ 31 – 49 mmHg kết hợp với kết cục thần kinh có lợi	

Contributing Factor	Details
Aspiration	30% have witnessed periarrest emesis ⁶⁰
Pulmonary contusion	40% experience pulmonary contusion after CPR ⁵⁶
Ischemia-reperfusion injury	Known to affect lungs in other disease states ⁵⁷
Ventilator-induced lung injury	90% of patients are mec' anically ventilated after arrest ^{58,5}
Infection	Early-onset pneumonia
Systemic inflammation/post-cardiac arrest syndrome	ificant pathophysiological ديرا Sepsis-like syndrome with s overlap with ARDS ^{27,61}

- Một vài nghiên cứu: Low Vt cải thiện tiên lượng Non-ARDS
- Sutherasan (2015) 812 bệnh nhân ngưng tim / 12 năm.
 - ✓ Xu hướng Vt 8,9 → 8 ml/Kg ✓ PEEP tăng 3,5 → 6,5 cm H2O
- Beitler (2017): 256 bệnh nhân ngưng tim ngoại viện
 ✓ Vt ≤ 8ml/kg → cải thiện kết cục thần kinh

SAU NGƯNG TIM

Oxygenation, Ventilation, Infection, and Injury

Nicholas J. Johnson, MD; David J. Carlbom, MD; and David F. Gaieski, MD

S

Parameter/Goal	Recommendation
Pao ₂	70-100 mm Hg
Spo ₂	92%-97%
Paco ₂	40-50 mm Hg
Tidal volume	
ARDS	4-8 mL/kg of predicted body weight ¹⁰⁵
No ARDS	6-8 mL/kg of predicted body weight
PEEP	≥ 5 cm H ₂ O Higher if ARDS, significant atelectasis, high BMI, and stable hemodynamics

- Tăng thông khí → co mạch → giảm lượng máu lên não → giảm áp lực nội sọ
- PaCO₂ < 35 hoặc > 45 mmHg / 20 phút đầu = 14 x nguy cơ tử vong
- High Vt/CTSN nặng → tăng nguy cơ ARDS
- Tăng Vt mục tiêu tăng thông khí \rightarrow có lợi ?
- Tăng tần số \rightarrow MV \rightarrow điều chỉnh PaCO₂

- Không nhận ra bệnh nhân có nguy cơ ARDS
- Không tính cân nặng lý tưởng: LOV-ED
- Lo ngại về sử dụng an thần: ARMA trial /ARDS, Serpa Neto / non-ARDS
- Lo ngại toan hô hấp: tăng áp lực nội sọ

- Thông khí Vt thấp ở bệnh nhân không ARDS → giảm nguy cơ ARDS, giảm thời gian nằm viện, tử vong
- Bệnh nhân nguy cơ ARDS: Vt 6 8 ml/kg predicted body weight, PEEP ≥ 5 cmH₂O.
- Theo dõi nhận diện ARDS → Vt 6 ml/kg
- Thông khí Vt thấp áp dụng ở cấp cứu.

2019

Annual Update in Intensive Care and Emergency Medicine 2019

TÀI LIỆU THAM KHẢO

1.Annual Update in Intensive Care and Emergency Medicine 2019 tr47 – 59

2. Simonis, F.D., Schultz, M. and Artigas, A., Towards Safer Ventilation in Critically ill Patients without ARDS.

3. Neto, A.S., Cardoso, S.O (2012). Association between use of lung-protective ventilation with lower tidal volumes and clinical outcomes among patients without acute respiratory distress syndrome: a meta-analysis. *Jama*, *308*(16), pp.1651-1659

4.Simonis, F.D., Neto, A.S., Binnekade, J.M., Braber, A., Bruin, K.C., Determann, R.M., Goekoop, G.J., Heidt, J., Horn, J., Innemee, G. and De Jonge, E., 2018. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS: a randomized clinical trial. *Jama*, *320*(18), pp.1872-1880

Neto, A.S., Rabello Filho, R., Cherpanath, T., Determann, R., Dongelmans, D.A., Paulus, F., Tuinman, P.R., Pelosi, P., de Abreu, M.G., Schultz, M.J. and PROVE Network Investigators, 2016. 5.Associations between positive end-expiratory pressure and outcome of patients without ARDS at onset of ventilation: a systematic review and meta-analysis of randomized controlled trials. *Annals of intensive care*, *6*(1), p.109 6. Neto, A.S. and Jaber, S., 2016. What's new in mechanical ventilation in patients without ARDS: lessons

from the ARDS literature. Intensive care medicine, 42(5), pp.787-789.

7. Sahetya, S.K., Mallow, C., Sevransky, J.E., Martin, G.S., Girard, T.D., Brower, R.G. and Checkley, W., 2019. Association between hospital mortality and inspiratory airway pressures in mechanically ventilated patients without acute respiratory distress syndrome: a prospective cohort study. *Critical Care*, 23(1), p.367.

8. Fuller, B.M., Ferguson, I.T., Mohr, N.M., Drewry, A.M., Palmer, C., Wessman, B.T., Ablordeppey, E., Keeperman, J., Stephens, R.J., Briscoe, C.C. and Kolomiets, A.A., 2017. Lung-protective ventilation initiated in the emergency department (LOV-ED): a quasi-experimental, before-after trial. *Annals of emergency medicine*, *70*(3), pp.406-418.

9.Johnson, N.J., Carlbom, D.J. and Gaieski, D.F., 2018. Ventilator management and respiratory care after cardiac arrest: oxygenation, ventilation, infection, and injury. *Chest*, *153*(6), pp.1466-1477

10. Slutsky, A.S., 2015. History of mechanical ventilation. From Vesalius to ventilator-induced lung injury. *American journal of respiratory and critical care medicine*, *191*(10), pp.1106-1115

CHÂN THÀNH CẢM ƠN SỰ LẮNG NGHE CỦA QUÝ ANH,CHỊ